lundi, février 25, 2008

chemistry hero of this week.... Ryoji Noyori, 2001 Nobel prize in chemistry

One of the issues I've been thinking about recently is that a number of great scientists end up with less than stellar children. A number of good scientists end up with children who are inspired and go on to do great things. It makes some sense. If you're devoting that much time to your career, then you aren't as able to give your children the time and attention necessary to develop them into the sorts of people who can do really great things for mankind. A rather sad trade-off.

Also, as Emily Carter wrote in her "It's the Culture, Stupid" article of 2005 in _The Daily Princetonian_ addressing Larry Summers comment that women don't stick with it in the sciences or math --women prefer balance and don't want to work at jobs that force them to have imbalanced lives. Often men who are very very successful like that have wives who stay at home and do everything for them. Less often do you see a pairing like Emily Carter and Bruce Koel's where both have won awards and have really great careers of equal stature. Sometimes you'll see people like Dan Kahne and Suzanne Walker, where because she started later on this path, her career will always be dwarfed by his, though she is an excellent scientist in her own right. What I'd like to see is an article from Emily Carter telling us how did she do it... how did she manage that balance?

I just discovered having read this article
http://www.nytimes.com/2008/02/23/business/worldbusiness/23perfume.html?_r=1&oref=slogin
then going to read this article
http://nobelprize.org/nobel_prizes/chemistry/laureates/2001/noyori-autobio.html
that Ryoji Noyori is one of the people responsible for the creation of levofloxacin a.k.a. Levoquin.
His work on this BINAP homogeneous catalyst has enabled tremendous advances in chemistry and allowing us to make chemicals of great use to mankind.
I am really really impressed.


_____________________________________________________________
Ryoji Noyori
The Nobel Prize in Chemistry 2001
Autobiography

Ryoji NoyoriI was born on September 3, 1938 in a suburb of Kobe (now Ashiya), Japan, the first son of Kaneki and Suzuko Noyori. Our family moved to Kobe soon afterwards. I grew up with two younger brothers and a sister in a pleasant city blessed by beautiful natural surroundings. Except for a short period at the end of World War II, I attended an elementary school affiliated to Kobe University from ages six to twelve, and then moved on to Nada Middle and High School from ages twelve to eighteen. I enjoyed many out-door activities in my youth.

My father, Kaneki, was a gifted research director of a chemical company, and his profession strongly influenced the path of my life. At home, we were surrounded by his scientific journals and books and various samples of plastics and synthetic fibers, and were frequently asked to test the quality of products which were under development for commercialization. When I entered middle school, my father took me to a public conference, the topic of which was "nylon". The lecturer explained proudly that this new fiber could be synthesized from coal, air, and water (the then famous catchphrase of DuPont company). Although I knew nothing about industrial technology, I was deeply impressed by the power of chemistry. Chemistry can create important things from almost nothing! The event had an enormous impact on this 12-year-old schoolboy, because it was in 1951, shortly after World War II when Japan was so poor. We were very hungry. It was at this point that it became my dream to be a leading chemist to contribute to the society by inventing beneficial products.

My appetite for chemistry was further wetted through class work led by enthusiastic teachers in middle/high school including Dr. Kazuo Nakamoto (then Osaka University and afterward Illinois Institute of Technology and Marquette University) who gave me my first chemistry lesson. I also liked other sciences and mathematics. Together with regular schoolwork, "judo" (one of Japan's traditional sports) was a major passion at this time. It was very popular amongst us because Nada School and Kodokan Judo School were founded by the same family. I highly appreciate the educational efforts of many schoolteachers as well as the warm friendship of classmates in those days, which strongly influenced the formation of my personal character.

In 1957, at the age of 18, I entered Kyoto University, which was known to be the most active institution in the research of polymer chemistry. Incidentally, this was the year when the USSR launched into space for the first time an artificial satellite, the Sputnik, thereby demonstrating the power of sciencebased technology. I recall that this success substantially shocked young science students in Japan. After three years, I started to study organic chemistry, rather than polymer chemistry, under the guidance of Professor Keiiti Sisido. The laboratory environment was very hospitable and I obtained my Bachelor degree in 1961. Upon completion of my Master's degree in 1963, I was immediately appointed Instructor of Professor Hitosi Nozaki's laboratories at Kyoto University and, in 1967, received my doctorate (DEng). My career path, that is the appointment to Instructor without a doctorate, is a little unusual but this is partly due to the difference in Japanese and Western education/teaching systems. Professor Nozaki strongly encouraged us to pursue new, original chemistry rather than tracing traditional subjects, while I served as a leader of his subgroup working on flourishing physical organic chemistry. It was under such conditions that in 1966 we discovered an interesting asymmetric catalysis that later became a life-long interest. This finding emerged during the course of an investigation of the transition metal effects in carbene reactions. Reaction of styrene and ethyl diazoacetate in the presence of a small amount of a chiral Schiff base-Cu(II) complex gave optically active cyclopropane derivatives, albeit with <10 % ee. Although the enantioselectivity was not synthetically meaningful, this was probably the first example of asymmetric catalysis using structurally well-defined organometallic molecular complexes. In the early 1960s, homogeneous catalysis (typically Reppe chemistry) was already well known, however, the notion of "molecular catalysis" that utilizes the structural and electronic characteristics of molecules more positively, was not clearly documented. This discovery opened my research perspective. In any event, I intended first to expand my scientific background under the supervision of an eminent chemist abroad, and Professor E.J. Corey at Harvard kindly agreed to accommodate me in his laboratories as a postdoctoral fellow. This plan, however, was postponed for reasons outlined below.

The situation changed drastically in the fall of 1967, when I received a totally unexpected offer from Nagoya University. I was asked to chair a newly created organic chemistry laboratory. This invitation surprised me. I was a mere 29-year-old Instructor at Kyoto enjoying daily research work with some young students. Nothing had prepared me to be a Professor at a major national university. Being too young and inexperienced to be a Full Professor, I was first appointed Associate Professor of Chemistry. In February, 1968, when I launched my own research group, Professor Yoshimasa Hirata, a senior faculty known for his outstanding accomplishments in natural products of organic chemistry, asked me to create a new stream of organic chemistry at Nagoya, different from his own field, thereby making the Chemistry Department more visible. I immediately decided to focus on organic synthesis using organometallic chemistry, which then comprised a branch of inorganic chemistry. Although not many researchers were aware of the high utility in organic synthesis, I was intuitively confident of the bright future of this scientific field. Professor Hirata consistently helped me in many aspects during his time at Nagoya University.

In 1969, as planned earlier, I went to Harvard. I was amazed by the enormous difference in the standard of living and science between the US and my mother country. Professor Corey was then already a leading organic chemist and I learned much from him. In addition, I became acquainted with many promising students and postdoctoral fellows including K. Barry Sharpless who was working with Professor Konrad Bloch. Later many of these reliable friends, together with their scientific relatives, grew to become eminent researchers in the scientific community and helped me in many ways. Synthesis of prostaglandins (PGs) was my research theme in the Corey group. After completing several works, I was asked to selectively hydrogenate a PGF2a derivative that has two C = C bonds to a PGF1a compound possessing a single C = C bond. This was the start of my three-decade-long work on hydrogenation. My interest in homogenous hydrogenation was enhanced by reading almost all available literature on this very new topic and also through personal interaction with Assistant Professor John A. Osborn, who had joined Harvard Chemistry Department from Geoffrey Wilkinson's laboratory at Imperial College, London. Osborn, an authority of Rh-catalyzed homogeneous hydrogenation, taught me many aspects of organometallic chemistry. It was in 1968, when W.S. Knowles and L. Horner reported independently the first homogeneous asymmetric hydrogenation using chiral phosphine-Rh catalyts, albeit in low optical yields. The fruitful Harvard experience, coupled with our earlier asymmetric cyclopropanation in 1966, led to my life-long research on asymmetric hydrogenation.

After returning to Nagoya in 1970, I began to study organic synthesis and homogeneous catalysis via organometallic chemistry, while in August 1972, at the age of 33, I was promoted to Full Professor. In the hope of development of efficient asymmetric hydrogenation and other reactions, we became interested in BINAP [2,2'-bis(diphenylphosphino)-1,1'-binaphthyl], a novel C2 chiral diphosphine possessing a beautiful molecular shape. Synthesis of the optically pure diphosphine was unexpectedly difficult. It was in 1974, that I started stereospecific synthesis from optically pure 2,2'-diamino-1,1'-binaphthyl with my long-term collaborator, the late Professor Hidemasa Takaya, who was with me at Nagoya and afterwards moved to the Institute of Molecular Science and Kyoto University. After two years, we managed to obtain optically active BINAP, however, the result was disappointingly irreproducible. In 1978, we reached a reliable method for resolution of racemic BINAP with a chiral amine-Pd complex. Unfortunately, the results of BINAP-Rh(I) catalyzed asymmetric hydrogenation of dehydro amino acids were highly variable depending on the reaction conditions. Eventually, in 1980 after a six-year endeavour, thanks to the unswerving efforts of my young colleagues and students, we were able to publish our first work on asymmetric synthesis of amino acids via this BINAP chemistry.

The success in our asymmetric hydrogenation largely relies on the invention of BINAP and the use of Ru element, which behaves differently from conventional Rh. A major breakthrough in asymmetric hydrogenation came in 1986, when we developed BINAP-Ru(II) dicarboxylate complexes that enjoy a much greater scope of olefinic substrates. Furthermore, in 1987-1988, 179 we developed a versatile general asymmetric hydrogenation of functionalized ketones with BINAP-Ru(II) dihalide complexes. The scope of this method is far reaching. These asymmetric hydrogenation methods allow for the synthesis of a wide array of terpenes, vitamins, b-lactam antibiotics, a- and b-amino acids, alkaloids, prostaglandins, and other compounds of biological and physiological interest. BINAP chemistry has been applied to the large-scale production of the synthetic intermediates of antibiotic carbapenems (Takasago International Co.) and levofloxacin, a quinolone antibacterial agent (Takasago International Co./Daiichi Pharmaceutical Co.). The efficiency of BINAP chemistry rivals or in certain cases even exceeds that of enzymes. In addition, a team of the Noyori Molecular Catalysis Project (ERATO, 1991-1996) discovered the catalysts of type RuCl2(diphosphine)(diamine) leading to another major breakthrough in hydrogenation. The reaction of unsaturated ketones occurs preferentially the C = O function leaving the olefinic linkage intact. The combined use of the BINAP ligand and a chiral diamine effects asymmetric hydrogenation of a range of aromatic, hetero-aromatic, and olefinic ketones. The reaction is very rapid, productive and stereoselective, providing the most practical method for converting simple ketones to chiral secondary alcohols.

BINAP-Rh(I) complexes are useful for asymmetric isomerization of allylic amines to enamines of high enantiomeric purity. In the early 1980s, a fruitful academic/industry collaboration was made between the groups at Osaka University (S. Otsuka and H. Tani), Nagoya University, Institute of Molecular Science (H. Takaya), Shizuoka University (J. Tanaka and K. Takabe), and Takasago International Co., realizing the industrial production of (-)-menthol and other optically active terpenes.

In 1995-1996, we invented a range of Ru(II) catalysts modified with a chiral b-amino alcohol or 1,2-diamine derivative that effects asymmetric transfer hydrogenation of ketones and imines using 2-propanol or formic acid as hydrogen donors. More recently, the reaction has proven to proceed via a nonclassical metal - ligand bifunctional mechanism. My interest in asymmetric chemistry is broad. In 1986, we found a highly enantioselecive addition of dialkylzincs to aldehydes using a small quantity of a camphor-derived chiral amino alcohol, where the alkylation products with high enantiomeric excesses are accessible with a partially resolved chiral ancillary. We could fully elucidate the origin of this striking chiral amplification phenomenon at the molecular structure level. My stay at Harvard in 1969-1970 spurred me to develop an efficient way to synthesize prostaglandins (PGs). In this connection, a series of selective synthetic methods was explored in our laboratories. Our binaphthol-modified lithium aluminum hydride reagent (1979) was applied to the commercial Corey PG synthesis (Ono Pharmaceutical Co.). Furthermore, we realized the long-sought three-component PG synthesis in 1985, which now plays an important role in biochemical and physiological studies of PGs.

Chemical synthesis provides a logical basis for molecular science and related technologies which require a high degree of structural precision. I have 180 tried to select general and fundamental research subjects in this important field. A clear-cut solution to a long-persistent problem, when accomplished, often results in an enormous scientific or technological impact. Asymmetric hydrogenation is a typical example. BINAP chemistry is now utilized worldwide in research laboratories and also at the industrial level. In fact, the selective synthesis of single enantiomers using well-designed chiral molecular catalysts has now become common practice. This fascinating field is still growing rapidly, and recent advances have dramatically changed the way of chemical synthesis, opening tremendous potential for molecular technologies.

Our broad research activity goes beyond asymmetric synthesis. In 1994, we discovered the remarkable utility of supercritical carbon dioxide as a medium for homogeneous catalysis. Thus Ru-catalyzed hydrogenation produces formic acid, methyl formate, and dimethylformamide with an extremely high turnover number. More recently, we devised practical, environmentally sound methods for olefin epoxidation and alcohol oxidation using aqueous H2O2, whose utility is highlighted by the direct conversion of cyclohexene to adipic acid (1996-1998). The stereospecific living polymerization of phenylacetylenes was achieved by using a structurally defined tetracoordinate Rh complex (1994). We also developed an efficient synthesis of solid-anchored DNA oligomers using organopalladium chemistry (1990). In my early days at Nagoya, we invented the iron carbonyl-polybromo ketone reaction which allows the construction of five- and seven-member carbocycles in a 3 + 2 and 3 + 4 manner, respectively. In the late 1970s, we exercised initiative in the catalytic use of organosilicon compounds for organic synthesis.

Organometallic chemistry is a scientific space leading to an enormous technical impact and even more general social benefits. I am very pleased to be involved in contributing to the progress of this significant scientific realm. The above described scientific accomplishments are not my own, but the credit in fact belongs to my research family at Nagoya University and many collaborators at other institutions. My initial ideas in solving problems were not always appropriate and, sometimes even nonsensical. However, my serendipitous collaborators incubated such research themes through careful experiments and much deliberation, and eventually reached new chemical concepts and useful methodologies. Their intellect, sense, and skills are highly appreciated. In addition, through my frequent traveling abroad as a visiting professor or invited lecturer at research institutions and conferences, I have met many superb colleagues from the international scientific community. Their encouragement as well as the exposure to different cultures and environments have deeply affected my way of thinking. Furthermore, for over three decades, my scientific work has been supported generously and consistently by the Ministry of Education, Culture, Sports, Science and Technology of Japan as well as the Research Development Corporation of Japan, various private foundations, and numerous industrial companies.

My activities are not limited to education and research. I have served on the editorial boards of some thirty international journals including the editorship of Advanced Synthesis & Catalysis (Wiley/VCH) which emphasizes the "practical elegance" of chemical synthesis. Furthermore, I have been involved in much administrative work, for example, as Science Advisor (1992-1996) and Member of the Scientific Council (1996-present) of the Ministry of Education, Culture, Sports, Science and Technology; Dean of the Graduate School of Science at Nagoya University (1997-1999); and President of the Society of Synthetic Organic Chemistry, Japan (1997-1999). Such official duties significantly hamper my research activity but are unavoidable for a senior scientist.

In 1972, I married Hiroko Oshima (a daughter of a Professor of Medicine at Tokyo University) who was studying the immunology of cancer at a research institute in Tokyo. Since then, she has played the most important part in our private life at Nagoya. We have two children. Our first son, Eiji (born in 1973), is an active staff writer of a newspaper company, and our second son, Koji (born in 1978), studies painting at an art university in Tokyo.


Appointments
Kyoto University: Instructor, 1963-1968.
Nagoya University: Associate Professor, 1968-1972. Professor, 1972-present. Director Chemical Instrument Center, 1979-1991. Dean, Graduate School of Science, 1997-1999. Director, Research Center for Materials Science, 2000-present.
Kyushu University: Professor (adjunct), 1993-1996.
Ministry of Education, Science, Sports and Culture: Science Advisor, 1992- 1996. Member of Scientific Council, 1996-2001.
Ministry of Education, Culture, Sports, Science and Technology: Member of Scientific Council, 2001-present.
Japan Society for the Promotion of Science: Committee Chairman, Research for the Future Program on "Advanced Processes", 1996-present. Science Advisor, 2001-present.
The Research Development Corporation of Japan: Director of the ERATO Molecular Catalysis Project, 1991-1996.
The Society of Synthetic Organic Chemistry, Japan: Vice President, 1994- 1996. President, 1997-1999.
The Chemical Society of Japan: President-Elect, 2001.

Honorary Degrees
Technische Universität München, Germany, 1995.
Université de Rennes 1, France, 2000.

Honorary Professorships
Shanghai Institute of Organic Chemistry, China, 2001.

Fellowships and Memberships
Fellow, American Association for the Advancement of Science, 1996.
Honorary Member, Chemical Society of Japan, 1998.
Honorary Fellow, Royal Society of Chemistry, UK, 2000.
Foreign Honorary Member, American Academy of Arts and Sciences, 2001.
Honorary Member, European Academy of Sciences and Arts, 2001.

Awards
The Chemical Society of Japan Award for Young Chemists, 1972.
The Matsunaga Prize (Matsunaga Memorial Foundation, Japan), 1978.
The Chunichi Cultural Prize (Chunichi Newspaper Co., Japan), 1982.
The Chemical Society of Japan Award, 1985.
The Naito Foundation Research Prize (Naito Science Foundation, Japan), 1988.
The Fluka Prize, Reagent of the Year (Fluka Chemie AG, Switzerland), 1989.
The Centenary Medal (The Royal Chemical Society, UK), 1990.
The Toray Science & Technology Prize (Toray Science Foundation, Japan), 1990.
The Merck-Schuchardt Chair (BOSS Symposium, Belgium), 1990.
The J. G. Kirkwood Award (Yale University, USA), 1991.
The Asahi Prize (Asahi Culture Foundation, Japan), 1992.
Tetrahedron Prize for Creativity in Organic Chemistry (Pergamon Press, UK), 1993.
The Keimei Life Science Prize (Keimei Foundation, Japan), 1994.
The Japan Academy Prize, 1995.
The Arthur C. Cope Scholar Award (American Chemical Society), 1996.
Bonn Chemistry Award (University of Bonn and Pinguin Foundation, Germany), 1996.
The Arthur C. Cope Award (American Chemical Society), 1997.
The Chirality Medal (International Symposium on Chiral Discrimination), 1997.
The George Kenner Award (University of Liverpool, UK), 1997.
Person of Cultural Merit (Japanese Government), 1998.
The King Faisal International Prize for Science (King Faisal Foundation, Saudi Arabia), 1999.
The Cliff S. Hamilton Award (University of Nebraska, USA), 1999.
ISI Citation Laureate Award (ISI/Thomson Scientific Inc., USA/Japan), 2000.
The Order of Culture (Japanese Emperor/Government), 2000.
The Special Award (The Society of Synthetic Organic Chemistry, Japan), 2001.
The Wolf Prize in Chemistry (Wolf Foundation, Israel), 2001.
The Roger Adams Award in Organic Chemistry (American Chemical Society), 2001.
The Nobel Prize in Chemistry (Royal Swedish Academy of Sciences), 2001.

Publications
Over 400 publications in scientific journals.

Patents
Over 160.

Selected References
Monograph: "Asymmetric Catalysis in Organic Synthesis." R. Noyori, John Wiley & Sons, New York, 1994.
Asymmetric Induction in Carbenoid Reaction by Means of a Dissymmetric Copper Chelate. H. Nozaki, S. Moriuti, H. Takaya, and R. Noyori, Tetrahedron Lett., 5239 (1966).
Organic Syntheses via the Polybromo Ketone-Iron Carbonyl Reaction. R. Noyori, Acc. Chem. Res., 12, 61 (1979).
Synthesis of 2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl (BINAP), an Atropisomeric Chiral Bis(triaryl)phosphine, and Its Use in the Rhodium(I)- Catalyzed Asymmetric Hydrogenation of a-(Acylamino)acrylic Acids. A. Miyashita, A. Yasuda, H. Takaya, K. Toriumi, T. Ito, T. Souchi, and R. Noyori, J. Am. Chem. Soc., 102, 7932 (1980).
Prostaglandin Syntheses by Three-Component Coupling. R. Noyori and M. Suzuki, Angew. Chem., Int. Ed. Engl., 23, 847 (1984).
The Allylic Protection Method in Solid-Phase Oligonucleotide Synthesis. An Efficient Preparation of Solid-Anchored DNA Oligomers. Y. Hayakawa, S. Wakabayashi, H. Kato, and R. Noyori, J. Am. Chem. Soc., 112, 1691 (1990).
An Organometallic Way to Prostaglandins: The Three-Component Coupling Synthesis. R. Noyori and M. Suzuki, Chemtracts-Org. Chem., 3, 173 (1990).
Chiral Metal Complexes as Discriminating Molecular Catalysts. R. Noyori, Science, 248, 1194 (1990).
BINAP: An Efficient Chiral Element for Asymmetric Catalysis. R. Noyori and H. Takaya, Acc. Chem. Res., 23, 345 (1990).
Enantioselective Addition of Organometallic Reagents to Carbonyl Compounds: Chirality Transfer, Multiplication, and Amplification. R. Noyori and M. Kitamura, Angew. Chem., Int. Ed. Engl., 30, 49 (1991).
Stereoselective Organic Synthesis via Dynamic Kinetic Resolution. R. Noyori, M. Tokunaga, and M. Kitamura, Bull. Chem. Soc. Jpn., 68, 36 (1995).
Homogeneous Catalysis in Supercritical Fluids. P. G. Jessop, T. Ikariya, and R. Noyori, Science, 269, 1065 (1995).
Asymmetric Hydrogenation. R. Noyori, Acta Chem. Scand., 50, 380 (1996).
The Catalyst Precursor, Catalyst, and Intermediate in the RuII-Promoted 184 Asymmetric Hydrogen Transfer between Alcohols and Ketones. K.-J. Haack, S. Hashiguchi, A. Fujii, T. Ikariya, and R. Noyori, Angew. Chem., Int. Ed. Engl., 36, 285 (1997).
Asymmetric Transfer Hydrogenation Catalyzed by Chiral Ruthenium Complexes. R. Noyori and S. Hashiguchi, Acc. Chem. Res., 30, 97 (1997).
A "Green" Route to Adipic Acid: Direct Oxidation of Cyclohexenes with 30% Hydrogen Peroxide. K. Sato, M. Aoki, and R. Noyori, Science, 281, 1646 (1998).
Asymmetric Catalysis by Architectural and Functional Molecular Engineering: Practical Chemo- and Stereoselective Hydrogenation of Ketones. R. Noyori and T. Ohkuma, Angew. Chem., Int. Ed., 40, 40 (2001).
Self and Nonself Recognition of Chiral Catalysts: The Origin of Nonlinear Effects in the Amino-Alcohol Catalyzed Asymmetric Addition of Diorganozincs to Aldehydes. R. Noyori, S. Suga, H. Oka, and M. Kitamura, Chem. Rec., 1, 85 (2001).
Metal-Ligand Bifunctional Catalysis: A Nonclassical Mechanism for Asymmetric Hydrogen Transfer between Alcohols and Carbonyl Compounds. R. Noyori, M. Yamakawa, and S. Hashiguchi, J. Org. Chem., 66 7931, (2001).

From Les Prix Nobel. The Nobel Prizes 2001, Editor Tore Frängsmyr, [Nobel Foundation], Stockholm, 2002

This autobiography/biography was written at the time of the award and later published in the book series Les Prix Nobel/Nobel Lectures. The information is sometimes updated with an addendum submitted by the Laureate. To cite this document, always state the source as shown above.


Copyright © The Nobel Foundation 2001

mardi, février 19, 2008

so here I am, once again, procrastinating?...

It turns out that my mind goes to pot after about 5 weeks of 13.5 hour work days 5.5 days a week. Yeah, YOU work that one out. Hah. I'm tired and grouchy and ought to be working.. which is why I'm posting online?

A couple of studies talk about how your brain needs help processing stuff. In fact, in one article I particularly like, searchable if you look for "Richard Hamming" Your Research at Bell Labs,-that isn't the real title of the talk, but it's enough keywords you'll find the transcript I'm talking about... discusses how if you sleep enough.. "you get some answers for free".. but only if you've "starved your subconscious." Dick Hamming is a riot -laughter-wise- and a phenomenal scientist and lecturer. His talk is well-worth reading in transcript form.
_______

In other news, I think John Greally is silly for putting up a blog and allowing comments, but not reading the comments... oh, yeah, wait... I do that myself. oops.

______
In even more unrelated comments... I got a real mussar shakedown from my personal guilt about not learning more or enough. We had a really nice shiur the other day from R'Yitzchak Blau. He gave a lovely shiur about sins, which I really thought was very nice. He also paid me a compliment which made me very happy and inspired the self-inflicted guilt-trip about oh, if I'm a natural, why don't I learn more and apply that talent more. Sigh. I keep promising myself that once this awful work crunch is over I'll go back to my normal learning schedule. It's just that this work-crunch has turned into a crunch-year... v'im lo achshav, eimatai?

dimanche, février 17, 2008

winners fo the recent Heroes of the week category...

I do believe very firmly that the skills of ethnography are useful in science and design.. and essential or tremendous innovations.


Heroes of the week: Donald A. Norman at the Segal Design Institute and Walter Herbst, KSM.
You can read more about Don Norman at his website
http://www.jnd.org/

Hero of last week: Emily A. Carter
http://prince-web1.princeton.edu/archives/2005/01/31/opinion/11842.shtml
http://prince-web1.princeton.edu/archives/2006/10/04/news/16045.shtml

Hero of the previous week Gerhard Ertl
see nobel prize site. Nobel Prize in Chemistry 2007 for an award in surface science.

Heroes of the week prior: Sam Danishefsky. Daniel Kahne. Suzanne Walker.

for a little bit about Dan Kahne, whom I remember from my days in Tigerland (but who has now moved to Crimsonland) see
http://www.hno.harvard.edu/gazette/2004/11.11/03-kahne.html
______________________
There is an interface between design, art, chemistry, and creativity.. and what is vital is to seize this moment for the betterment of society. So... where do we begin?

the candidates for the hero of the week category

1) Here's an interesting article from the epigenetics world about using a novel bioinformatic approach to look at CpG islands. Nice work from the Greally lab at AECom.

http://nar.oxfordjournals.org/cgi/content/full/gkm489?ijkey=CzeZ15jFKYUAQTn&keytype=ref

nice work, but no cigar.

....the next two items are thumbs down on the conventional wisdom scale.....

2) http://www.hno.harvard.edu/gazette/2004/11.11/photos/3-kahne-450.jpg
Bash Harvard, becuase why they were stupid enough to focus only on Dan Kahne's move there and not Suzanne Walker's move there is sexist.
Kahne brings chemistry to life

Professor bridges biology and chemistry

By William J. Cromie
Harvard News Office

Daniel Kahne is not so much a self-made man as a mentor-made man.
Mentors brought him back to college when he dropped out, taught him the joy of research, and gave him the idea of solving some of life's biological problems with the help of chemistry.

Harvard brought him here in July as a tenured professor of chemistry and chemical biology to do for others what others have done for him. He is here to develop and apply the tools of chemistry to questions like how do bacteria always manage to keep one evolutionary step ahead of all the scientists who are trying to kill them?

Kahne also will participate in a new Ph.D. program in chemical biology that bridges the scholarly and collegial gap between Harvard Medical School and the University's departments of chemistry and molecular biology.

"I have no formal training in biology," admits the 45-year-old professor. "But I have always been interested in questions related to biology and human health, and I can provide a different perspective from which to study these questions. I'm excited about the opportunities I'll have to do this here."

Christopher T. Walsh, Hamilton Kuhn Professor of Biological Chemistry and Molecular Pharmacology at the Medical School, is glad to have Kahne here. "Dan is deeply thoughtful as a scholar," he says. "His creativity is in thinking deeply about molecular puzzles and inconsistencies and coming up with experimental approaches to resolve them. We have had a very productive collaboration on antibiotics, how bacteria become resistant to them, and what can be done to combat resistance with new drugs. Besides, he is also a serious Red Sox fan."

Walsh also is a fan of Kahne's wife, Suzanne Walker, who moved with him from the chemistry department at Princeton University. "Both are terrific people as well as front-rank scientists," Walsh says. "She has an appointment as a professor of microbiology and molecular genetics at the Medical School. I have moved my labs to be her immediate neighbor, and we will be collaborating on a number of projects."

Art history vs. chemistry

Raised in Lexington, Mass., Kahne comes from an academic family with ties to Harvard. After a long career as a professor at MIT, his father lectured in social psychiatry at Harvard Medical School from 1969 to 1973. His mother received a Ph.D. in labor economics from Harvard in 1953, then chaired the department of economics at Wheaton College in Massachusetts until she retired at age 70.

In high school, Kahne was curious enough about health issues to work summers in a research lab at Beth Israel Hospital in Boston. He also studied art and majored in art history at Cornell University, where he wrote a thesis on the Swiss impressionist Paul Klee.

Kahne dropped out of Cornell, but his adviser, Roald Hoffmann, didn't drop out on him. "He could have said, 'What the heck is your problem?' Kahne recalls, "but he remained supportive. He made me visit him at his office every week, and suggested that I work in the chemistry lab of a young faculty member, Dave Collum." Hoffmann himself had been an art history major and wound up winning a Nobel Prize in chemistry.

"I can't recall any specific moment that I became interested in chemistry," Kahne comments. "I think people find their way in life based in part on relationships with others. Hoffmann and Collum made it enjoyable to do research."

This turned out to be true in graduate school, too. Kahne earned his Ph.D. and did postdoctoral work in chemistry at Columbia University between 1981 and 1988. "That was the happiest time of my life," he recalls. "I met my wife, who was also graduate student, there, and I worked with world-class scientists who were also great teachers."

With Gilbert Stork, his Ph.D. adviser, Kahne studied the structure of tetracycline. "Stork didn't care that tetracycline was an antibiotic," he says. "We didn't discuss its biological activity. He wanted to learn how to build molecules of that complexity in a lab."

Structure vs. function

As a postdoc at Columbia, Kahne worked with Clark Still, a man he describes as a "genius." "Biologists tend to work with large molecules like DNA and proteins," he notes. "Clark wanted to mimic some of the functions of natural large molecules with synthetic small ones. With him I began to think more about the functions of molecules, whereas before I had focused mainly on their structures."

This focus on function came in handy when Kahne moved to an assistant professorship at Princeton. "I met a lot of molecular biologists there, and they encouraged me to think about problems on the interface of chemistry and biology," he says.

Over the next 17 years, there was a national movement toward using chemistry to understand biology, and Kahne became part of it. "My wife and I decided to come to Harvard because of a strong interdisciplinary program that involves the commitment of outstanding scientists in chemistry, biology, and medicine."

Kahne is also looking forward to preparing graduate and undergraduate students to travel this new road in chemistry. "There are so many exciting new things to learn here," he says, "that I can be both a student and a mentor."

3) As often is the case the science journalists have way-over-hyped the work.. and made a lot of people excited over something that isn't a viable technique and prob won't be usable within the next twenty years if ever. Thumbs down on the media people.

"A step towards three-parent babies? Progress report shows clinical application of technique still far away.

Erika Check Hayden
A predictable media circus followed a UK newspaper's report yesterday that scientists have created so-called 'three-parent embryos'. But some of the reports have misconstrued what the scientists have actually done thus far, and the scientists caution that their unpublished work, while promising, is still far from clinical use."

alea iacta est

It turns out that after quite a long time debating what I will do with my life, I'm almost on the verge of announcing that I've chosen to throw my lot in with the research science academics.

I thought about doing non-profit management like at a hillel or something and having done that on a volunteer basis -read procrastinating on PhD work- I've come to the realization that while I'm good at it, and can edfinteily get better at it.. it isn't thrilling, exciting, or challenging enough for me to be happy doing it full time. I might change my mind if I ever marry and have a family, but it just doesn't seem like the sort of thing that would make me deeply fulfilled at this point.

I also thought about consulting and really wish that a company like HerbstLeZarBell would be interested in hiring me, but it seems that this opportunity is not to be, not just yet at least.

On one side, I think I'd like to go back to school and get an MD degree... but a part of me says not just yet. Maybe when I'm 40 or something. ;-) I've a passionate interest in neuroscience and the work of STeven Quartz. It's a fascinating idea to me that potentially we could understand the source of religion in the mind... check out the work in the Jan 3 edition of the NEJM. (Yeah, I read NEJM for fun and to procrastinate working on my own work. Don't say there is no such thing as a geeky cat.) What I really want to be looking at though is how do I apply what I know about design, organization, people, art, beauty, and elegant engineering to chemistry, biology, neuroscience, and medicine?
This is my life's calling.


I'm applying to a job in policy work just in case nothing else pans out, but it's not the first of my choices at this stage of my life. I think it will be when I'm 50-ish for so.

Plans for writing the great story, screenplay, or novel are on hold, though I keep jotting down ideas here and there.

other people's thoughts on giving a good talk...

http://blogs.usyd.edu.au/labrats/2007/06/everybodys_talkin_1.html

http://www.scs.uiuc.edu/suslick/seminaronseminars.html

Also, I can't find anymore the posting about how to adapt your presentation slides to people who are color blind, but search for it and maybe you'll find it.. well worth reading over and implementing the advice in your talk... especially if you do imaging of any sort and science.

samedi, février 16, 2008

The creativity of the Jewish people. a rant, a worry, and a challenge...

I am worried about the state of Israel. We are losing more and more ground to the Palestinians who have truly mastered manipulating the media. Jews have mastered the law, but they have neglected how important presentation is. They have neglected how to sell how wonderful Israel is to Israelis themselves. What is on Israeli TV? I would like to see a TV sitcom or series where the underlying lesson actually is how to feel good about Israel and being an Israeli. Israelis have forgotten also though, how to laugh at themselves. This is what worries me the most. The pressures of the politics have made them neurotic -even as Elie Wiesel suggested it was a miracle that such a thing had not happened yet. I read about how the Israeli education strike has halted things in the country and I am worried, because Israel's strength and economy require the brains. If Israeli children are ranking lower and lower in math skills, if they are ranking lower and lower in science, history, reading, economics, and finance ... how will we build our precious Eretz HaKodesh? I do not say we need to silence the Leftist voices, who remind us that we have to fix the imbalances and the injuries. They have good things to say. We need to pay attention to these things as well. What worries me though is that it is clearer and clearer to me that the decline in Israeli education spells disaster for Israelis -whether they are Jewish, Arab, Druze, Christian or something else. Education is a Jewish value. Education is a tremendous resource. We need to be creative and search for solutions that matter.

Someone needs to go lobby the countries that pledged -France, England, the US, etc,. that when they give money to the Palestinian Authority, they need to promise that the money be used only for certain things.. like economic development, health care, municipal facilities, feeding people, the kind of infrastructure that matters. They will be forbidden to use it for the further brainwashing of their people to become terrorists. That part is unacceptable, because we will have contributed blood money. If someone in Hollywood would make a move exposing the PA and terrorists... exposing Nasrallah for who he really is... that would be wonderful. If someone would write a best-selling thriller to put out there what is really going on in the world with people like these mastermind terrorists... that would also be good.

Where is the creativity of the Jewish people going?

mercredi, octobre 31, 2007

So I was listening to a friend of mine talk about how his wife turned to him this past week and remarked, "dear, you're beginnign to look like your father." He was a litle surprised and asked her how. It turns out that he had gone shopping and found a bunch of new shirts that heliked. One shirt in particular were the colors his father prefers wearing and it was on sale, so he bought it. When his wife saw him with itone, she immediately thought of his father.

Over the years I've heard lots of people discuss how one can't help but become their parents... I'm sure that for some people this is perfectly fine, but for others this is a positively horrifying experience.

Life, relationships, marriage, and the like

kosher food in Connecticut, USA

I recently learned about the following establishments, which considering I'm trekking tehre to make kosher food ...this is all useful information. I figured that it would be useful to impart this upon the greater public in case anyone else needs such information.

The Crown Market
http://www.thecrownmarket.com/

The Shop Rite on Frontage Road in New London carries kosher meats and cheeses, some frozen foods.

Kosher New Haven
New Haven is a Kosher town; we have the most kosher
opportunities in Connecticut. Below you will find a complete
list of the local kosher establishments in our area. Please
continue to support them.
- Joshua Cypess
Rabbi, Young Israel of New Haven

Local Kosher Establishments updated November 11, 2005
All numbers are (203)

synagogue located at 292 Norton Street.

Yale Kosher Kitchen at Slifka Center
80 Wall St, New Haven
432-1134
http://www.yale.edu/slifka/kosher_kitchen/index.html
Vaad HaKashrus of Fairfield County
Mashgiach Temidi on premises
Mon-Fri
Breakfast 8:30 am-9:30 am
Lunch 11:30 am-1:30 pm
Dinner 5 pm-7 pm
Fri dinner 6:45
Sat lunch 12:30
Closed Sunday

Meat Restaurants
Kosher Express (Chinese cuisine)
132 Amity Road (Amity Plaza Shopping Center)
387-7889
Organized Kashrus Laboratories (O-K)
Sun-Thurs 11 am-9 pm
Fri 11 am-1 hour before candle lighting
Sat night one hour after sunset
Mashgiach Temidi on premises

Westville Kosher Meat Market
95 Amity Road , New Haven
389-1723
http://www.westvillekosher.com/index.php
Vaad HaKashrus of Fairfield County
Mon-Wed 8:30 am-6 pm
Thurs 8:30 am-7 pm
Fri 8:30 am-3 pm
Sun 8:30 am-2 pm

Dairy Restaurants
Claire's Corner Copia
1000 Chapel St New Haven
562-3888
http://www.clairescornercopia.com/
Rabbi David Avigdor
Mon-Fri 8 am-9 pm
Weekends 8 am-10 pm

Edge of the Woods
379 Whalley Ave, New Haven
787-1077
Vaad HaKashrus of Fairfield County
Bakery & Pizza only
Mon-Fri 8:30 am-7:30 pm
Weekends 9 am-6 pm

Stella's European Bakery & Café
372 Whalley Avenue, New Haven
772-4779
Vaad HaRabonim of Massachusetts (KVH) - Cholov Yisroel
Sunday 10 am - 5 pm. Monday - closed, Tuesday &
Wednesday 10 am - 6 pm, Thursday 10 am - 8 pm, Friday 8
am - 2 hours before sunset, & Shabbat 6 pm - 10 pm.

Bakeries
Shaw’s Supermarket Bakery
2100 Dixwell Ave., Hamden
230-5000
Vaad HaRabonim of Massachusetts (KVH)
Mon, Wed, Sat 6 am-9 pm
Tues, Thurs, Fri 6 am-8 pm
Sun 6 am-6 pm

Stop & Shop Supermarket Bakery
2335 Dixwell Ave , Hamden
248-9615
Vaad HaRabonim of Massachusetts (KVH)
Daily, 24 hours

Stop & Shop Supermarket Bakery
112 Amity Road , New Haven
389-8600
Vaad HaRabonim of Massachusetts (KVH)
Daily, 7 am-9 pm


Krispy Kreme Donuts
1440 Boston Post Road, Milford
878-1283
Hartford Kashrus Commission (HKC)
Daily 5:30 am-11:30 pm
Drive-through daily, 24 hours

dimanche, octobre 21, 2007

John Warner retires...

It's the end of an era for me. The US Senator from Viriginia is retiring and with his retirement an era is closed. I remember sitting in his office as a young adult. I remember meeting with his aides. I remember passionately loving and respecting this man who was part of a mental love-affair with all Virginians. Though a flawed character, he seemed to have the grace that Virginians care about so much.... the honor, uprightness, gentility, etc. that has been part of the greatness of how Viriginia produced her sons for the nation's service. That Virginia gave our country so many presidents, so many strong leaders, so much beauty, so much love... The home of many military installations -not at all in the least the US Navy -home of the Atlantic Fleet.... Virginia. You rooted your sons and daughters in history. You planted them firm and gave them ideals.

So it is that from such an illustrious background, faded glory perhaps, but noble nonetheless....
John Warner is quitting the senate finally. Perhaps best known for having married and divorced Elizabeth Taylor, perhaps best known for defending his fellow Virginians in the Senate Armed Forces Committtee. An end to a childhood adoration of the Spector- Gramm- Warner- Robb- Bentsen- Rudman congress.... a congress that is no more.

{taps please}